Factory#
A factory makes objects that compute FFTs.
To avoid needless repetition, only the single precision classes for NumPy
are documented below.
Of course, float16
, float32
, float64
and numpy
, torch
, jax
,
tensorflow
, and dlpack
are all similar.
CLASSES
- class hpk.fft.FactoryCC_float32_numpy#
- FactoryCC_float32_numpy.makeInplace(self, layout: collections.abc.Sequence[hpk.fft.InplaceDim], batch: hpk.fft.InplaceDim = (1, 0)) hpk.fft.InplaceCC_float32 #
- FactoryCC_float32_numpy.makeOoplace(self, layout: collections.abc.Sequence[hpk.fft.OoplaceDim], batch: hpk.fft.OoplaceDim = (1, 0, 0)) hpk.fft.OoplaceCC_float32 #
- FactoryCC_float32_numpy.maxThreads(self) int #
An upper bound on the number of threads that could be used.
- FactoryCC_float32_numpy.nextFastLayout(self, layout: collections.abc.Sequence[hpk.fft.InplaceDim]) list[hpk.fft.InplaceDim] #
- FactoryCC_float32_numpy.nextFastLayout(self, layout: collections.abc.Sequence[hpk.fft.OoplaceDim]) list[hpk.fft.OoplaceDim]
- class hpk.fft.FactoryRC_float32_numpy#
- FactoryRC_float32_numpy.makeInplace(self, layout: collections.abc.Sequence[hpk.fft.InplaceDim], batch: hpk.fft.InplaceDim = (1, 0)) hpk.fft.InplaceRC_float32 #
- FactoryRC_float32_numpy.makeOoplace(self, layout: collections.abc.Sequence[hpk.fft.OoplaceDim], batch: hpk.fft.OoplaceDim = (1, 0, 0)) hpk.fft.OoplaceRC_float32 #
- FactoryRC_float32_numpy.maxThreads(self) int #
An upper bound on the number of threads that could be used.
- FactoryRC_float32_numpy.nextFastLayout(self, layout: collections.abc.Sequence[hpk.fft.InplaceDim]) list[hpk.fft.InplaceDim] #
- FactoryRC_float32_numpy.nextFastLayout(self, layout: collections.abc.Sequence[hpk.fft.OoplaceDim]) list[hpk.fft.OoplaceDim]